海淘科技编者为你整理的《网站优化数据分析面临的挑战》。
网站数据分析也称为web analytics 按照维基百科的定义为:Web Analytics is the measurement, collection, analysis and reporting of Internet data for the purposes of understanding and optimizing Web usage.意为通过收集、度量和分析互联网数据进而理解网站业务和优化网站的一种方法. 是一门比较新的互联网分支,最近几年得到重大发展。2012年3月后WAA改名为Digital Analytics Association.
尽管如此,传统的网站分析还面临以下各种挑战:
挑战:基于cookie机制和移动互联网发展导致用户多终端、多浏览器的访问对确定真正唯一用户的挑战?
解决方案:在部分电商和登陆网站可以利用customer id(注册id)和cookie id的关联关系去定义唯一用户(虽然仍然存在偏差,账号公用导致customer id大量对应不相关cookie id)。
挑战:传统线下和互联网融合更加紧密,传统公司开始有大量online数据,而过去的online公司也会同样产生更多offline数据,如何更好标准化和对接数据成为挑战。
解决方案:至少需要小型BI系统,建议将前端WA数据输出到bi系统。
挑战:转化渠道的关系和贡献度如何确定
跨渠道分为多种
a、 多个click广告: 渠道之前的关系更加密切,用户在转化和形成品牌认知前经常跨越多个媒介 。
first click last cick or average 都是计算模型。
b、线上impression广告对渠道的贡献:传统的web analytics是基于click点击行为的数据,对于impression广告的贡献和参与的分配将是web analytics面临的另外一大挑战
c、offline marketing对于online marketing的转化促进作用的贡献程度如何确定?
如: 线下品牌广告对线上用户搜索和交易等行为起的引导促进作用如何量化,线下分地域投放和线上基于地域的效果监控、二维码、优惠券的使用、短地址的采用能部分解决线下往线上转移的监控。
d、营销的后续影响对于转化的贡献度如何定义?
张栋在微博曾经说的案例就是这样的情形:”【一个点击到底多少钱?之二】一个电商 SEM 每天花 1000 元, 每天总共 3500 个点击:SEM 带来 1500 个点击 + SEO 自然流量 带来 2000 个点击;这个电商停止 SEM 投放,每天 SEO 自然流量带来 100 个点击,问:一个 SEM 点击到底多少钱?”
解决方案:总体来说,需要完整的Attribution model机制和更加完善的监控机制,比如展现广告的监控,同时还需要case by case的分析(基于每次营销的)。
挑战:不计算后端的数据,单纯一个网站的前端数据的维度也变得越来越多
哪些数据是最终支持通用kpi,在异常个案中如何收集证明案例的数据
解决方案:从业务和商业目标出发的去收集数据,在异常情况需要case by case.
挑战:网站分析师在技巧技术娴熟的情况下,更多的是凭借敏锐的商业嗅觉去收集数据,分析数据,对商业的理解可以更好发挥网站分析的作用。
网站kpi有很多:转化率、 新会员注册、老会员回访、顾客数增多、品牌和口碑曝光度等等,网站分析师必须更加懂商业,抓住主线。例如在网站分析中常见的有长期商业目标和短期商业目标。分析师如果不清晰目标往往得出对商业无利的结论,在电商中毛利率和订单金额是长期追逐目标,但在短期阻击对手活动中这个明显就不是短期指标,比如京东要做图书的早期,一定是优先看用户数和市场规模,打击毛利率。
解决方案:对分析师的要求越来越高,懂统计、计算机、商业的分析师将是各个公司追逐的目标。
挑战: 基于网络立法对用户隐私的保护,cookie可能会被block,各个浏览器和操作系统对tracking的态度将导致跟踪cookie的数据完整性。
解决方案:几乎无方案,国内的用户隐私政策相对宽松,需要行业自律。
挑战:从vistor到customer的数据对接:如在常见电商购物车放弃率达到70%,从前端监控到用户登陆流程需要完整化,才可以采用精准营销案例唤醒购物车放弃用户。
解决方案:网站分析系统需要更多的自定义参数和api接口去关联用户更多的非浏览行为和离开网站后的后续行为。
挑战:工具和人谁先行?
设计wa工具的pm具有前瞻性带来的好处是更多的分析师群体可以更好使用工具,但工具的使用门槛大幅提高。
而当分析师更有前瞻性,瓶颈便在分析工具上,但不可能每个分析师都要求自主按自己想法去设计工具。
解决方案:wa工具pm需要精通wa,提供可供选择的版本和功能供普通用户和分析师使用。
挑战:传统的wa局限在页面上下游关系,需要收集页面位置和区块点击的显性反馈数据作用到个性化推荐等系统中,需要企业有强力的部署和实施能力,典型案例:amazon的url架构,页面不同位置和区域url均被埋点,针对用户和搜索引擎两套url。
解决方案:
判断uesr-agent,前端用一个js脚本控制,当用户出发区块的链接时,就会在url末尾自动加上标签。
以上就是上海SEO优化——海淘科技为你整理的《网站优化数据分析面临的挑战》的全部内容。相关资讯可点击:页面数据分析:跳出率和退出率分析。